Образовательный минимум

Четверть	1
Предмет	Математика
	(профильный)
Класс	10

1	Угол между касательной и хордой	Угол между касательной и хордой, проходящей через точку касания, измеряется половиной заключенной в нем дуги
2	Теоремы об отрезках, связанных с окружностью	 Произведение отрезков одной из двух пересекающихся хорд равно произведению отрезков другой хорды Произведение секущей на её внешнюю часть равно квадрату касательной
3	Углы с вершинами внутри и вне круга	 Угол между двумя пересекающимися хордами измеряется полусуммой заключенных между ними дуг Угол между двумя секущими, проведенными из одной точки, измеряется полуразностью заключенных внутри него дуг
4	Признак вписанного четырёхугольника	Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность.
5	Признак описанного четырёхугольника	Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.
6	Теорема о длине медианы	Квадрат медианы треугольника равен $m^2 = \frac{a^2}{2} + \frac{b^2}{2} - \frac{c^2}{4}$
7	Теорема о биссектрисе треугольника с с в	Биссектриса треугольника делит его сторону на части, пропорциональные двум другим сторонам. $\frac{\text{CO}}{\text{AC}} = \frac{\text{BO}}{\text{AB}};$
		Квадрат биссектрисы треугольника равен $AO^2 = AC \cdot AB - CO \cdot BO$
8	Формулы площади треугольника	S= pr; $S = \frac{abc}{4R}$; $S = \sqrt{p(p-a)(p-b)(p-c)}$;
		$S = 2R^2 \sin A \sin B \sin C$